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Abstract 

This work concerns convergence theorems with a sequence of ~-approximants 
for exponential evolution operators with Lie operator arguments. A companion paper 
presents the formulation of the ~-approximants. The theorems presented in this ' paper 
give the conditions which are sufficient for convergence of the sequences. Although 
the main emphasis will be on convergence properties of the one-dimensional case, the 
generalization to multidimensional cases is quite straightforward. 

1. Introduction 

In a companion paper, we developed a new factorization scheme [1] for exponential 
evolution operators with Lie operator arguments. The factorization was based on 
the ordering of contributions to the evolution operator with respect to deviations 
from a steady-state solution. Hence, in the Lie operator of the form f(x). V, the 
function f(x) must vanish around the origin x = 0. The factorization scheme results 
in an infinite product of elementary evolution operators and the approximation to 
the desired overall evolution operators is achieved by a truncation of the infinite 
product to order n. This procedure produces a sequence of ~-approximants to the 
desired evolution operator. The effect of the Lie transformation, or its approximate 
representation, on the position vector x is fundamental in the theory since many 
of the basic operations may be related to certain properties of Lie transformations. 

~-approximants are rich in singularities and two consecutive elements of their 
sequence are related through a first-order but nonlinear recursion relation. As the 
limit of the sequence of the ~-approximants is taken, infinitely many branch point 
trajectories may exist in the complex x-plane. The flexibility inherent in the ~- 
approximants suggests that this approach may rapidly converge to accurately approximate 
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the effect of  the evolution ol~rator on x. This conjecture was confirmed in a numlmr 
of  applications [1], although certain cases exhibited slow or non-convergent  
characteristics. 

Such empirical evidence is helpful, but a mathematical proof of  the convergent 
t~havior is needed in order to intelligently use the method in realistic applications. 
It is necessary to establish not only the existence of convergence, but also to determine 
the criteria under which convergence is expected. The purpose of this paper is to 
address these latter issues. 

In order to mathematically explore the convergence characteristics, section 2 
will investigate the singularities of  the {-approximants. This section will also define 
some useful fundamental concepts. Section 3 will present the convergence theorems 
for the {-approximant sequences. These latter developments will be carried out for 
the one-dimensional case, and section 4 will generalize the theorems to the multi- 
dimensional case. Finally, section 5 presents concluding remarks. 

. Singularities of ~-approximants and some fundamental definitions in the 
one-dimensional case 

The evolution operator of  concern has the form Q = e tf(x) ~, where f(x) is 
a specified function_defining the Lie operator. The action of Q on x is approximated 
by a sequence of ~-approximants, Qx --- ~. such that 

~n+l = ; { l ( X , t ) = x e  Jqt, (2.1) 

where 

and 

Q = e 'f(x)~ = I ' I  e°J(t)x' ~; (2.2) 
j = l  

f (x)  = ~ fkx k. (2.3) 
k= l  

The coefficients o~(t) in each of the elementary exponential o~ra to r s  in eq. (2.2) 
are global functions of  time. The evaluation of these coefficients establishes the 
terms of  the recursion relations in eq. (2.1) and the details of  this operation were 
presented in an earlier paper [1]. The iteration in eq. (2.1) may be written in explicit 
form as: 

x e A t 
~ 2 ( x , t ) =  1 _ ~ 2  x ,  (2.4) 
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~3 (x, t) = xeA t  (2.5) 
E ( 1 - - d z x ) 2 - - d 3 x z ] l / 2  ' 

~, (x, t) 

IIIE[ I __-~2 X]2 -'~3X21312 -- 3"] 4/3  
= -0"4X .] "'" 

where 

1 ~-2"-1 ]-lln _-Gn_I xn-2 _-~n xn-1 xefX t, 

(2.6) 

~n+l  = ncrn+ l (t)e nflt. (2.7) 

The structure of -~,~ may be identified as a type of continued fraction. 
The origin in the complex x-plane is not a singular point for all" the ~,,'s as 

long as t remains finite. Since o',(0) = cr,(0) = 0, all singularities of the approximants 
are gathered at infinity at the ]nitiatio~n of the evolution. Each singularity moves 
along a trajectory in the complex x-plane as time evolves, and may or may not reach 
the origin when t tends to infinity. As a specific example, we will now examine 
the second approximant ~z(x, t). This approximant has a rather simple singularity, 
a pole, whose location is given as follows: 

fl 
Xp = [eAt - 1]f2 ' 

(2.8) 

where we have made use of the formula 

crz(t ) = (1 - e -fit) f~l " (2.9) 

Since the expansion coefficients fn are assumed to be real, the pole in eq. (2.8) 
is evidently located on the real axis of  the complex x-plane. The pole starts to move 
from either + ~  (f2 > 0) or - ~  (f2 < 0) to a limiting point as time t tends to infinity. 
If  f2 = 0, the pole remains at infinity. In general, two different cases occur as time 
evolves, assuming that f2 ~: 0, 

0 f !  _>0, 
tlirrl Xp (t) = f l  

f l < O .  
(2.10) 

It is apparent from eq. (2.10) that if the system under consideration is unstable, 
f~ > 0, then the trajectory of the singular point ends at the origin. However, if the 
system is stable, f~ < 0, then the singular point stops at a finite location away from 
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the origin on the real axis. Therefore, at least for this approximant, there is a "clean" 
region where a singularity can never appear iff~ < 0, and the origin of  the complex 
x-plane is an interior point of this clean region. If the system under consideration 
is unstable, the origin may again be included in this clean region; however, in this 
case it becomes a point located on the border of the clean region. 

In order to gain further insight into the ~n-approximants, we shall now examine 
the next approximant ~3- This approximant has four branch points, two of which 
are located at infinity and the remaining ones are given below (where o 3 _> 0, other- 
wise branch points are complex): 

x 1 =  E-~2 (t) . [-~3 (t) ]]'2] -1 x2 = E-~2 (t) - [~3 (t) ]'12~-! (2.11) 

These singularities are algebraic branch points with two Riemann sheets. Depending 
on the nature of the system, cr22 - °'3 may be positive, zero or negative. If it differs 
from zero, then the origin becomes an interior point of the clean region for this 
approximant. 

There is a remarkable property about the ~-approximants, which can be stated 
as follows. If ~ h a s  a singularity which is a branch point (except for the case 
j = 2), then every ~k-approximant (k > j )  will have the same singularity. This means 
that when j tends to infinity there will be an abundance of branch point trajectories 
in the complex x-plane. Any given trajectory may or may not be in the clean regions 
of certain given approximants in the complex x-plane. As we shall see, the proof 
of the convergence of the -~-approximant sequences completely depends on the existence 
of these regions and their locations. 

It is now useful to make some definitions before proceeding. A given system 
is ultimately prescribed by the behavior of the functions f (x) describing the corresponding 
Lie operator. If the complex x-plane of such a system has a region where any portion 
of the branch point trajectories of the ~-approximants never exists, then we shall 
call this region a "clean region" in accord with the use of these words above. If, 
additionally, this region includes the origin of the complex x-plane as an interior 
point, then this region will be called the "main clean region" of the system. We 
further define a "global normal" system as follows: i f f  a system described by f (x)  
has a main clean region with a nonzero measure, it is a global normal system, where 
we have used a measure in the sense that the measure of any countable infinite 
set vanishes. This latter measure is employed to exclude the possibility of having 
a clean region which only includes the origin. The interpretation of this definition 
of a global normal region can be made as follows: if we deal with a finite period 
of time, then the system will apparently have a main clean region. If we denote 
this region by R(t),  then we can write: 

lim R(t)  = R s D [0], m(Rs)  > 0. (2.12) 
l ---~ oo 



M. Demiralp, H. Rabitz, Factorization of operators: H 197 

In other words, the main clean region will continue to have a set of  uncountable 
points around the origin when time tends to infinity if the system is global normal. 
This definition may be relaxed by limiting ourselves not just to a semi-infinite time 
period, but to a finite one starting from t = 0. Therefore, we can define the "temporary 
normal" system as follows: a system described by f (x)  is temporary normal iff it 
has a main clean region with a nonzero measure (m) for a given time period [0, T]. 
Here, m is defined again in such a way that the measure of every finite or countable 
infinite set is zero. Finally, all remaining systems will be "abnormal". As can be 
observed, all global normal systems are at the same time temporary normal, and 
all abnormal systems can be considered as a limiting case (T ~ 0) of temporary 
normal systems. 

3. Convergence theorems in the one-dimensional case 

From an examination of eqs. (2.1), (2.5)-(2.7),  we may rewrite the approxi- 
mants ~(x,  t) as follows: 

X e f i t  
~j (x, t) = Aj (x, t)" (3.1) 

The function A~(x, t) in the denominator satisfies the recursion relation 

An(x,t) [Ann-I (x, t) -~nxn-l~ l,(n-1) = - , n > 2 ;  A I = I .  (3.2) 

One may conclude from this relation that the serial representation of  An(x, t) in positive 
integer powers of x with time-dependent coefficients will converge within a finite 
circle of  nonzero radius around the origin of  the complex x-plane for some time 
period [0, T]. One can then construct a Majorant series for this function such that 

I An(x, t) I < On(x, t); D n > 1; I xl  < pn(t); n >_ 1, (3.3) 

where pn(t) denotes the time-dependent convergence radius of the n th Majorant series. 
The expression for the bound D n may be established as follows: 

I A n n (x, t) I < Dn n (x, t) 

I A~(x, t ) - -an+lXn I < IA", (x, t) l+  I a , ,+l  I Ixl n < Off(X, t)(1 + I'a,,+111xl") 

I An+l I < On(x, t)(1 + I-~n+l I Ixl~) 1/n 
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I An+ll  < On(x, t)(1 + I~,+~ I Ixl") 

Dn+l (x, t) = On(x, t)(1 + I o'n+l I Ixl"). (3.4) 

The latter result implies that 
o o  

Doo(x, t) = DN(X, t) H ( 1 + I-~N+j I N+j Ix IN+J- 1) • (3.5) 
j = l  

If the infinite product in eq. (3.5) is convergent, this is the region of the complex 
x-plane defined by I x I <  p(t) and 

p(t) > Pmin > 0 (3.6) 

for all t values, then D ( x ,  t) will converge to a finite value. This result also 
implies that the function A ( x ,  t) will converge for all t values in a region defined 
by I xl < /gmi n. The existence of such a convergence implies that the zeros of the 
function An(x, t) in the complex x-plane are bounded from below in absolute value 
for all times. This in turn means that the system is global normal. 

The condition for convergence of the infinite product in eq. (3.5) is equivalent 
to establishing the convergence of the following expression: 

o o  

dN(x, t) = ~.~ I-~N+jl Ix i N+j- I (3.7) 
j = l  

If this sum converges and remains smaller than unity for sufficiently large N values, 
then the infinite product in eq. (3.5) also converges. If Pmin in eq. (3.6) vanishes, 
then two circumstances may occur: 

(i) p(t) > Pmin(T) > 0, t ~  [0, T]; (3.8) 

(ii) p(t) > Pmin(T), pmin(T) = 0 (except T = 0). (3.9) 

The first of these cases corresponds to a temporary normal system, while the second 
implies the abnormal case. We have therefore proved the following theorem: 

THEOREM 1 

If the following infinite sum 

d(x, t) = ~ I~j [Ix ]J- 1 
j = l  
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converges in a circle around the origin of the complex x-plane Ix [ < p(t), then the 
following statements hold: 

(i) if p(t) > Pmi, > 0 for t ~ [0, oo], the system is global normal; 

(ii) if p(t) > Pmin(~') > 0 for t ~ [0, "r] with "r > 0, the system is, at least, temporary 
normal. 

COROLLARY 1 

If the first condition (i) of  theorem 1 holds, then the sequence of ~-approximants 
converges for all x and t values in the regions I xl < Pmin and [0, oo], respectively, 
and they have a permanent main clean region with nonzero measure. 

COROLLARY 2 

If the second condition (ii) of  theorem 1 holds, the sequence o (  ~-approxi- 
mants converges at least for all x and t values in the regions Ix I < Pmin (2") and [0, "r], 
a: > 0, respectively, and they have at least a temporary clean region around the origin 
of the complex x-plane. 

We now seek to more explicitly express the relation between the convergence 
condition of d(x, t) and the nature of the system. As derived in the companion 
paper [1], the a-coefficients are described as 

&n + 1 (t) = f (n)(0, t), (3.11) 

with 

and 

f (n+ 1)(X, t) = f ( n ) ( x [ 1  + n~Yn+ 1 (t)xn] -1/") - f  (n)(0, t) 
x 

(3.12) 

f (1)(x, t) = ~ J~+2 e -(j+ 1)mxJ. (3.13) 
j=o 

Now, if we assume that f (x) converges for [ x I < (Pf  > 0), we can write the 
following inequality: 

13~+21 < mf..__:.. (3.14) 
p/ 

This relation, however, permits us to write the following Majorant function for 
f (1)(x, t): 

M1 (x, t) = Af  e -or1 
1 lxle- m , Ix[ < p f e  el = p f e  Jqt. (3.15) 

Pf 



200 M. Demiralp, H. Rabitz, Factorization of operators: H 

Let us now assume that we have found a Majorant function forf(")(x, t) as follows: 

An • f(n)(x,t)= ~ Fn~)(t)xJ; IF~J)(t)l < p---~, (3.16) 
j=o 

A .  
M. (x, t) - , (3.17) 

1 - Ix l / p .  

where F.(J) stands for t ime-de~ndent  coefficients and A n, p.  denote certain time- 
dependent functions. The last assumption, however, makes it possible to write the 
following expression for M. + 1, the Majorant function of f ("  + 1)(x, t), as can be revealed 
after a careful examination of the recursion given by eq. (3.12): 

M. (Ixl [1 - n I or.+111xl" ] -1/ . ) -  M. (0, t) 
M.+I (x, t) < (3.18) 

Ixl 

If we use the expression of M. given by eq. (3.17), we can write 

M.+ l (x,t) < __A" G.(x,t) . (3.19) 
±ql/ .  

19. 1 - [ n l c r . + l l +  p: /  Ixl 

where 

Gn(x, t) = gl,n(x, t) (3.20) 
g2,. (x, t) ' 

n - 1  

gl,,,(x,t)= ~ (1-nlcr .+l l lx l")("-J-1) /"pjIx~,  
j=l  

(3.21) 

g2,n(X,t)= n l ~ r . + l l + - -  Ixl j .  
i=1 P~ 

(3.22) 

Since Gn(0, t) = 1 and G.(x, t) is a monotonic decreasing function of x in a non- 
vanishing region of the x-complex plane around x = 0, we can construct the following 
Majorant function for the right-hand side of eq. (3.18): 

An+l 
Mn+l (x, t) = , (3.23) 

1-Ixl/p.+l 

where 
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~An . 
An+l  = Pn ' A1 = A f e  -A t  (3.24) 

and 

1 _ Inlo.n+ll+ 1 ) 
P,,+l p." 

l l n  

; P l  = P f  e f i t .  (3.25) 

If we assume that (nl  O'n+ll)l/ne At is bounded by v, then we can write 

a,~ < e- f~tpn (3.26) 

O~ n 

a n + l  = ( l  + n n 1 ' v a n )  /n a l  = P l  " (3.27) 

Therefore, we have made the convergence radii of the Majorant functions smaller. 
As can be easily shown after some intermediate steps, a n monotonically converges 
to a nonzero limit, say a, as n tends to infinity. This makes it possible to write 

Bn e - f l  t 
B.+I  - ~ ;  B1 = A f ,  (3.28) 

Bn 
Mn = (3.29) 

1 - x e - f l t / a n  " 

Since ° 'n.  1 < Mn + 1( 0, t), we can obtain 

(1 - e -~f , t )Af  
Io 'n+l ( t ) l<  , n >  1, (3.30) 

n f  l Ot n 

which obviously satisfies the boundedness condition of  (nl o' , ,+ll)l/nef ' t  globally 
for f l  < 0 and temporarily for f l  > 0. This result immediately produces the following 
theorem. 

T H E O R E M  2 

If  the descriptive function of  a given system is denoted b y f ( x ) ,  ( f ( 0 )  = 0), 
then the following statements are true: 

(i) if f (x) has a finite convergence radius centered at the origin of the complex 
x-plane and f l  < 0, then the system is global normal; 

(ii) if the same conditions of  case (i) hold except that f l  > 0, then the system 
is at least temporary normal. 
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Our third theorem_ concerns_ the-~ -approximants. Let us consider the inverse 
relation t~tween ~ and ~ +  1. 

~ = ~+I_  (3.31) 
n [1 + ncrn+ l ~+1 ]l/n 

If we write 

{(pl 
"V= min ncrn+--------~l ) j ,  (3.32) 

and if the following holds for a specific n 

1~.+1 (x, t)l <-- v,,+l -< v, (3.33) 

then, 

- v ~ + l  
I~.1 < (3.34) 

- - n  1 ] l / n  " [ 1 -  nlncr,,+l I ~ +  

Now one can choose vn+ 1 in a way such that 

- v , , + l  ~ n  

vn = [ 1 - n l c r n + l [  Pn ]l/n >v~+~ = [ l + n l o . + l l _  ]1/n _<-v~, (3.35) 
n+ 1 Vn 

where vn is defined as 

[~.(x, t) l  <_ v .  <-v. (3.36) 

Therefore, we conclude 

THEOREM 3 

If we denote the minimum of the expression ( I 1/(n cr n + 1) I )l/n, n = 1, 2 . . . .  by v, 
and for a finite fixed N, the approximant ~u remains smaller than v in absolute value, 
then all higher order approximants behave in the same way. 

The interpretation of this theorem is as follows. If the system is globally 
normal, then the limit of the sequence of approximants ~(x, t) = lira u _~ = ~u will 
remain permanently in the main clean region. 
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In the proofs of these theorems, we assumed that f ( x )  has real coefficients 
and that x is a complex variable. We did this for the sake of simplicity. However, 
if f (x )  is assumed to be a complex quantity, nothing will change except the replacement 
of f l  with /R(fl) .  

4. Generalization to the multidimensional case 

In the companion paper [l] establishing the approximants, it was noted that 
there is a degree of  flexibility in the order of  the elementary factors or propagators 
associated with a multidimensional Lie transformation. A convenient ordering for 
the proof  of  convergence can be written as follows: 

Q = etY(x), v = etxr.fTo' .v H elaS',x{ arc "'" 11 el~} aw , 
j=0 j=0 

(4.1) 

where #)N) depends on xn's except x N and t. We have chosen an ordering of a 
product  of elementary exponential operators such that the differentiation with respect 
to x N is effected first. This ordering has a practical implication if we consider the 
effect of  Q on x 1, in which case the last ( N -  1) curly bracketed operators reduce 
to unity due to the fact that they have no effect on xl: 

QXl = etxT'fT(1)'V { j=l ~ e~'/''(l)~y* 1 ~KzT-} x lO l • (4.2) 

Similarly, if we deal with Qxj, then we can choose the ordering or the curly bracketed 
operators in such a way that 

f ~ sj(j)x k ~ ) Qxj = e'"" " f ' ° x  v I-I e'-* ~ ag xj 
k=l 

(4.3) 

can be written. Such changes of ordering will alter the #j's, and without loss of 
generality, we may consider the particular ordering in eq. (4.1). 

To find, for example, /.t~l)(x 1 . . . . .  x N, t) we can obtain a partial differential 
equation which must  satisfy 

a#(o 1 ) N 
at  =.fl (-#(ol),x2 . . . . .  XN)+ Z ? J  (--/'t(0 I),x2 XN) a#(01) (4.4) 

j=2 ..... OXj ' 

where fj denotes the new descriptive vector element of  the system after extraction 
of its linear response. This may be equivalently stated as 
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I f ( x ) l x = o = O ,  {Vfj} l ,~ l=0=0,  I < j < N .  (4.5) 

The same equations are assumed to hold for p~l) 

/.t(ol){ 0, 0 . . . .  ,0, t} = 0, {V#O}lxl=O = 0, (4.6) 

since the first-degree terms are excluded by extraction of the linear response. Hence, 
eq. (4.4) may be solved by a multidimensional Taylor series with the initial condition 

]2~I)(x2 . . . . .  XN, O) = O. (4.7) 

The convergence of such series has been thoroughly investigated in the theory of 
partial differential equations [2]. Therefore, #~1), and the other # 's  which satisfy 
the same kind of partial differential equations, can be assumed convergent and bounded 
in a closed domain around the (n - 1)-tuple manifold formed by the Cartesian product 
of the x 2 . . . . .  x u complex planes. In analogy with the previous section, one 
may prove theorems about the convergence properties of the sequence of  approxi- 
mants generated by truncating the product of operators in eq. (4.2). These same 
type of statements follow as before except through a change of the x-plane into 
an n-tuple manifold constructed by the Cartesian product of the n-complex planes 
(xl-plane . . . . .  xN-plane). 

5. Concluding remarks  

In the first of these two papers, we presented a factorization scheme for Lie 
transformation evolution operators, and in the present paper we have given sufficient 
conditions for the convergence of the scheme. Under appropriate circumstances, 
these approximants form a practical tool to produce a rapidly convergent and high 
precision approximation to the original evolution operator. These new approximants 
are also richer than, for example, Pad6 approximants for numerical analysis. This 
comment follows due to the abundance of branch points, which makes it possible 
to characterize many types of functions having various types of singularities, These 
two papers are actually only the first step in the theoretical development of these 
new types of approximants, and much additional research needs to be done for their 
deeper understanding and to bring them to a truly practical level. 
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